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Abstract: We investigate gauge coupling unification in higher dimensional GUT models

with split supersymmetry. We focus on 5d and 6d orbifold GUTs, which permit a simple

solution to several problems of 4D GUTs as well as control over GUT scale threshold

corrections. In orbifold GUTs, calculable threshold corrections can raise or lower the

prediction for αs(MZ) in a way that depends on the location of Higgs fields. On the

other hand, split supersymmetry lowers the prediction for αs(MZ). Consequently, split

supersymmetry changes the preferred location of the Higgs fields in orbifold GUTs. In the

simplest models, we find that gauge coupling unification favors higgs doublets that live

on the orbifold fixed points instead of in the bulk. In addition, relatively high scales of

supersymmetry breaking of 1010±2 GeV are generically favored.
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1. Introduction

Weak scale supersymmetry provides a nice solution to the naturalness problem and a

predictive framework for electroweak symmetry breaking. It also successfully predicts

gauge couplings unification at a scale of ≈ 2× 1016 GeV thereby providing support for the

idea that the standard model is embedded in a grand unified theory (GUT) [1]. Recently,

Arkani-Hamed and Dimopoulos proposed that naturalness may not be a good criterion for

determining weak scale physics [2]. Instead, they proposed that the higgs mass is fine-tuned

and looked for alternative motivations for supersymmetry not tied to naturalness. Giudice

and Romanino investigated this possibility further and found that the MSSM with heavy

scalar superpartners and light fermionic superpartners emerged naturally by demanding

gauge coupling unification and a viable dark matter candidate [3]. This framework is known

as split supersymmetry (split-SUSY) and further model building and phenomenological

consequences have been worked out in [4].

In this paper, we focus on the issue of gauge coupling unification and the embedding

of split-SUSY in a viable GUT model. We focus on orbifold GUT models with a single

extra dimension because these provide a particularly nice solution to many of the standard

problems with 4d GUTs and a calculable framework for high-scale threshold corrections [5 –

9]. In the simplest 4d supersymmetric SU(5) GUTs, the prediction for the strong coupling

constant at the scale MZ is αMSSM,GUT
s (MZ) = 0.130 ± 0.0041, somewhat larger than the

experimentally measured value of αexp
s = 0.119±0.002 [11]. One of the important aspects of

split-SUSY is a prediction for αs(MZ) that is smaller than in 4d GUT scenarios. Likewise,

1We’ve neglected including threshold contributions in quoting this prediction, [10].
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one of the important features of orbifold GUTs is the presence of threshold corrections to

gauge couplings coming from heavy KK states that can improve the agreement between

the predicted value of αs(MZ) and experiment. The primary goal of this paper is to show

how the competing effects on αs(MZ) from split-SUSY and 5d orbifold GUT thresholds

constrain the structure of generic orbifold GUTs. Contrary to the findings of previous

authors [9, 12 – 14] that bulk higgs fields are preferred for gauge coupling unification in

low-energy SUSY models, we find that brane localized higgs fields are naturally preferred

in the split-SUSY scenario.

This result is attractive for several reasons. First, if the Higgs fields live on a brane, then

the simplest possibility of just having the MSSM or SM Higgs doublets can be realized [15].

Moreover, brane higgs scenarios are readily compatible with inherently 4d mechanisms of

electro-weak symmetry breaking. Of course, we do lose a few nice features with brane

Higgs doublets such as unified quark-lepton mass relations and charge quantization, but

in any case SU(5) quark-lepton mass relations for the first two generations are seemingly

inconsistent with experiment.

Our paper is outlined as follows. In section 2, we’ll review the framework of orbifold

GUTs with extra dimensions. Although the findings of our analysis will apply quite gener-

ally, we’ll focus on the class of models developed in [9, 12 – 14] to illustrate the important

features of orbifold GUTs with split-SUSY. In section 3, we’ll discuss the effects of raising

the SUSY breaking scale above MZ as well as the competing effects of heavy KK state

thresholds. In section 4, we’ll present the results of our two-loop analysis of gauge cou-

pling unification and our findings for the favored range of the SUSY breaking scale and the

location of the higgs fields in an orbifold GUT completion. We then end with concluding

remarks.

2. GUTs with extra dimensions

Among the many successes of 4d SUSY GUTs is the explanation for charge quantization

and the pattern of quark and lepton quantum number, a prediction for gauge coupling uni-

fication close to experimental bounds, quark-lepton mass relations that reduce the number

of flavor parameters in the standard model, and a robust framework for generating small

nonzero Majorana neutrino masses. However, important issues remain unresolved in these

models. Chief among these is the predicted rate of proton decay from colored higgsino

exchange that essentially excludes the simplest SU(5) GUTs. Other problems include the

origin of SU(5) breaking, the very large splitting in mass required between the Higgs colored

triplet states and weak doublets, the fact that the observed quark/lepton mass relations for

the lighter generations violate generic GUT relations, and little explanation for the other

flavor hierarchies of the standard model.

GUT models with extra dimensions offer several possible resolutions to these problems.

As in [9, 12 – 14], one can construct a 5d or higher dimensional model with SU(5) gauge

symmetry and break the symmetry down to SU(3) × SU(2)L × U(1)Y on 4d branes using

boundary conditions. For example, in 5d orbifold theories, orbifold fixed points serve as the

branes on which the SM fields can live. The boundary conditions emerge as a consequence

– 2 –
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of requiring the fields to transform with definite parity under the orbifold group. With

such a setup, the quark and lepton families and higgs of the standard model can be added

to either the bulk or to the branes.

The low energy effective theory consists of the lightest states in the KK expansion

of fields. What should we require of the low energy theory? In our case, we want to

recover the MSSM at low energy. All of the SU(5) triplet states should be heavy, and

proton decay should be suppressed to experimentally acceptable levels. To see how these

requirements can be naturally satisfied in a higher dimensional GUT, let’s consider the

specific model developed in [12]. Not only does this model illustrate the important features

of higher dimensional GUTs, but we will use this model to concretely study gauge coupling

unification with split-SUSY later.

2.1 A 5d orbifold GUT model

Based on [12], the model we’ll consider contains a single extra dimension. The orbifold we

consider is obtained by taking the real line and identifying under translations by 2πR and

the discrete reflection Z : y → −y. This is just S1

Z with two orbifold fixed points (orbifold

branes) located at y = 0 and y = πR where R is the radius of S1 [12]. It is assumed

that the bulk theory has 5d N=1 SUSY so that there is a natural way to obtain 4d N=1

SUSY on the orbifold branes. SU(5) gauge fields are taken to reside in the bulk so that

boundary conditions can break the symmetry down to SU(3)×SU(2)L ×U(1)Y on at least

one of the two orbifold branes. Thus, bulk gauge fields reside in a 5d N=1 SUSY vector

multiplet, (V,Σ), consisting of a 4d N=1 SUSY vector multiplet V and chiral multiplet Σ

transforming in the adjoint of SU(5). Matter fields can reside either in the bulk or on the

branes. Bulk matter fields reside in 5d N=1 SUSY hypermultiplets, (Φ,Φc), consisting of

4d N=1 SUSY chiral and anti-chiral multiplets Φ and Φc respectively.

Under the orbifold actions, the constituent multiplets transform with definite parity.

To preserve a single N=1 SUSY in the zero mode spectrum, the gauge fields V and Σ

are given Z parities of + and − respectively. Bulk hypermultiplet constituents Φ and Φc

are given parities + and − respectively. Translations by 2πR act on the fundamental of

SU(5) as P = (+,+,+,−,−), and so break SU(5). In addition, there can be extra factors

of ηΦ = ±1 for bulk hypermultiplets. The above parity assignments lead to boundary

conditions on the fields at the orbifold fixed points,

V ±(xµ, y) = V ±(xµ,−y) = ±V ±(xµ, y + 2πR),

Σ±(xµ, y) = −Σ±(xµ,−y) = ±Σ±(xµ, y + 2πR),

Φ±(xµ, y) = Φ±(xµ,−y) = ±ηΦΦ±(xµ, y + 2πR),

Φc±(xµ, y) = −Φc±(xµ,−y) = ±ηΦΦc±(xµ, y + 2πR), (2.1)

where the superscript ± refers to the parity under the SU(5) breaking action of translations.

At y = 0, we see that bulk 5d N=1 (4d N=2) SUSY has been broken down to 4d N=1 by

Z, but SU(5) is still operative. At y = πR, the bulk SUSY has been broken down to 4d

N=1 and SU(5) has been broken with only SU× SU(2)L × U(1)Y surviving.
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A single generation of standard model fermions can live in the bulk if they reside in

two hypermultiplets transforming in the 10, T (u, e) and T ′(q), and two in the 5̄, F (d) and

F ′(l). With the choice ηT = ηF = 1 and ηT ′ = ηF ′ = −1, the zero modes of these four

hypermultiplets fill out a single generation of standard model fermions. There is also the

possibility of part of a generation living on an orbifold brane with the remainder in the

bulk. For example, d and l can come from a 4d N=1 susy 5̄ multiplet living on a brane

while the u, e, and q components come from two 10s in the bulk.

If the Higgs fields arise from the bulk, they can come from two bulk hypermultiplets

transforming in the 5 and 5̄ [12]. Another possibility is for the Higgs to arise from a

vector multiplet. For example, Higgs fields with the correct quantum numbers can come

from the doublet components of the adjoint of SU(6) under its SU(3) × SU(2)L × U(1)Y
decomposition. 6d orbifold models with this feature have been constructed in [16]. Of

course, the Higgs can also be a brane field [15].

Having introduced the orbifold GUT framework, we can see how the problems of

standard 4d SUSY GUTs can be resolved. The Higgs doublet-triplet splitting problem is

solved by requiring boundary conditions that eliminate the triplet zero mode. The Higgs

triplet states are now naturally heavy with mass of order, 1/Mc, where Mc = 1/R is the

scale of the extra dimension. We also have the possibility of placing Higgs fields on the 4d

SU(5) violating brane in which case there are not necessarily any triplet partners to begin

with.

Yukawa couplings of bulk hypermultiplets are forbidden by 5d supersymmetry and so

the yukawa couplings reside on the branes. Thus, if the Higgs is in the bulk, then proton

decay from dimension five triplet higgsino exchange via dirac mass terms is eliminated by

the bulk supersymmetry. Additional dangerous sources of proton decay can be eliminated

by using the bulk SU(2)R symmetry that comes from the N=2 4d SUSY of the 5d bulk [12].

SU(5) mass relations can be preserved for the heaviest generation by placing it on the

SU(5) brane at y = 0. If the first two generations are placed in the bulk, then their masses

will not respect SU(5) relations because the down-type quarks and charged leptons have

different yukawa couplings to the Higgs field for our choice of representation. Moreover,

because the bulk fields are spread out in the extra dimension, wave-function suppression

will naturally make their masses smaller thereby explaining why heavy matter fields satisfy

SU(5) mass relations while light matter does not.

Gauge coupling unification can proceed as usual except now there will be radiative

corrections coming from KK modes and brane localized gauge kinetic operators that do

not respect the bulk SU(5). As long as the extra dimension is large compared to the

unification scale, then the bulk gauge kinetic operators will dominate over brane localized

operators by a factor of Ms

Mc
. Of course, this assumes that we can reliably estimate the

couplings to be of comparable strength at some scale. We will later identify the unification

scale with the scale of strong coupling for the 5d theory thereby justifying this assumption.

In this paper, we will also briefly consider 6d SO(10) orbifold GUTs. SO(10) orbifold

GUTs on T 2

Z2
have been constructed and their features discussed in the literature [17]. Other

6d orbifold GUTs with unified gauge group SU(6) have been constructed that contain Higgs

doublets arising from bulk gauge fields [16]. For our purposes, the primary impact on
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gauge coupling unification that 6d models introduce consists of different power law scaling

of couplings above the scale Mc than in 5d models. As will be made explicit in section 3,

the primary effect of a sixth dimension will be to decrease the overall magnitude of the

contribution to αs from KK thresholds.

3. Gauge coupling unification in split-SUSY

In this section, we discuss gauge coupling unification in split-SUSY. We start by consider-

ing the experimentally measured values, sin2 θW (MZ) = 0.23150 ± 0.00016, α−1(MZ)) =

128.936 ± 0.0049, and αs(MZ) = 0.119 ± 0.003 [11]. Given sin2 θW (MZ) and α−1(MZ)),

we can obtain a prediction for αs(MZ) assuming unification at a high scale. A one-loop

analysis of this prediction will give a prediction for αs(MZ) with errors dominated by the

large SU(3) coupling of order (α1−loop
s (MZ))2. However, the experimental uncertainty is of

order .003 ≈ (αs(MZ))3, so a full two-loop analysis with one-loop thresholds is needed to

reliably compare theory with experiment.

The easiest way to calculate gauge coupling predictions is to use a succession of effective

field theories (EFTs) obtained by integrating out heavy particles at the appropriate mass

scales [18]. In this way, we can use a simple mass independent renormalization scheme

such as M̄S (or D̄R if we’re working with SUSY) in each effective theory. The effects of

large log contributions at lower energies coming from massive states is absorbed into the

matching conditions between the theories. Assuming that the gauge couplings are unified

at a scale MG, the evolution of the coupling down to MZ proceeds in two steps. In the

first step, the tower of KK modes contribute at one-loop to the gauge couplings above the

compactification scale Mc. From the 5d perspective, the theory is not renormalizable which

is reflected by the mass dimension of the 5d gauge coupling. Thus, we expect power-law

scaling of the gauge couplings between the GUT scale MG and Mc. In the second step, the

gauge couplings run in the usual logarithmic fashion from Mc to MZ .

For clarity, we start by discussing the familiar logarithmic running and matching below

the scale Mc. After studying the one-loop effects of lifting the SUSY breaking scale mS ,

we will discuss the scaling of the couplings above Mc.

3.1 Running and matching gauge couplings

The underlying UV theory is the model presented in section 2. After matching between

the 5d theory and the effective 4d theory at the compactification scale Mc, we obtain the

MSSM. In the split-SUSY scenario, we assume that the squarks, sleptons, charged and

pseudoscalar Higgs are degenerate with mass mS. Below the scale mS , the effective theory

consists of only the higgsinos H̃u,d, gluinos g̃α, W-inos W̃ a, B-ino B̃, and the standard

model fields with a single higgs doublet H,

LSSSM = Lgauge + m2H†H − λ

2
(H†H)2 −

−[yu
ij q̄jui(iσ2H

∗) + yd
ij q̄jdiH + ye

ij l̄jeiH +

+
M3

2
g̃αg̃α +

M2

2
W̃ aW̃ a +

M1

2
B̃B̃ + µH̃T

u (iσ2H̃d) +

– 5 –
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TeV

Split-SUSY

mS

MSSM

M
′
c

5d SU(5) GUT

MG

UV Completion

6

Energy

Figure 1: Summary of the effective theories and their relevant scales in a 5d SU(5) orbifold GUT

with split-SUSY

+
1√
2
H†(g̃uσaW a + g̃′uB̃)H̃u +

1√
2
(HT iσ2)(−g̃dσ

aW̃ a + g̃′dB̃)Hd] + h.c.

With Hu and Hd the up-type and down-type MSSM Higgs doublets respectively, we fine

tune the linear combination H = − cos(β)iσ2H
∗
d + sin(β)Hu to be light. The tree level

matching condition between the MSSM and the split-susy lagrangian can be found by

taking Hu → sin(β)H and Hd → cos(β)iσ2H
∗ in the MSSM lagrangian, so that

λ(mS) =
g2
2 + 3

5g2
1

4
cos2(2β),

yu
ij = λu

ij sin(β),

yd,e
ij = λd,e

ij cos(β),

g̃u = g2 sin(β),

g̃d = g2 cos(β),

g̃′u =

√

3

5
g1 sin(β),

g̃′d =

√

3

5
g1 cos(β), (3.1)

where λu,d,e
ij are the Higgs yukawa coupling matrices in the MSSM. To obtain predictions

for standard model couplings at the weak scale MZ , we also need to match the split-SUSY

theory onto a low energy theory containing just the standard model fields [19].

With our collection of effective theories (illustrated in figure 1), we RG run the MSSM

from the compactification scale Mc to the scale of supersymmetry breaking mS [3]. We then

match onto the split-SUSY effective lagrangian (3.1) using the matching conditions (3.1).

After RG running the split-susy couplings to the scale of the higgsino and gaugino masses,
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we match onto the standard model. Finally, we match the low-energy parameters to exper-

imentally measured couplings and extract a prediction for αs(MZ) using measured values

of sin2 θW (MZ), α(MZ), and masses of the standard model fermions as inputs.

In matching the theories above and below mS, we must consider several large threshold

corrections. First, the running of the gaugino and higgsino masses can lead to a significant

spread in masses at low energy, so separate thresholds are included for each. The heavy

top mass also contributes a large threshold above the weak scale, so it is also included.2

We should in principle include all of the one-loop thresholds coming from the sparticle and

higgs scalar spectrum at mS, but it is a decent approximation to ignore these effects given

that our theory is weakly coupled at mS for mS sufficiently large.

3.2 One-loop analysis

Using the RGEs in [3], we can obtain some insight into the consequences of split-SUSY and

GUT thresholds for gauge coupling unification by calculating their one-loop effects. First,

we focus on the effects of lifting mS to a high scale and so we momentarily ignore GUT

thresholds. The gauge couplings αi(MZ) can be written as

1

αi(MZ)
=

1

αi(MG)
+

bMSSM
i

2π
log

MG

MZ
+

+
bSSSM
i − bMSSM

i

2π
log

mS

MZ
+

bSM
i − bSSSM

i

2π
log

M

MZ
+ γi + δi, (3.2)

where MG is some high mass scale (either the compactification scale, or if we were doing

conventional unification the GUT scale), M is the mass scale of gauginos and higgsinos, and

bSM
i = (41

10 ,−19
6 ,−7), bMSSM

i = (33
5 , 1,−3), and bSSSM

i = (9
2 ,−7

6 ,−5) are the β-function

coefficients for the standard model, the MSSM, and split-SUSY respectively. The two-

loop contributions are contained in the γi factors and additional small threshold factors

are included in δi. In the limit mS = M = MZ , an easy way to obtain a prediction for

αs(MZ) = α3(MZ) is to take the linear combination α−1
3 − 12

7 α−1
2 + 5

7α−1
1 . Using (3.2), the

log MG

MZ
term cancels out and we are left with

α−1
3 (MZ) =

12

7
α−1

2 (MZ) − 5

7
α−1

1 (MZ) + γ3 −
12

7
γ2 +

5

7
γ1 + δ3 −

12

7
δ2 +

5

7
δ1, (3.3)

where we’ve assumed that αi(MG) ≈ α(MG). Feeding in the experimentally measured

values of α1,2(MZ), one obtains αMSSM,GUT
s (MZ) = 0.130 ± 0.004 for the MSSM [10].

When mS ,M ≥ MZ , we can take the same linear combination as in (3.3) to calculate

αs(MZ). The difference δαs between αMSSM,GUT
s (MZ) and the value calculated in the

split-SUSY case is then approximately,

δαs(MZ) ≈ −αs(MZ)2

2π
∆, (3.4)

2The difference between the M̄S running and pole mass can lead to additional threshold correction that

should also be included. In our analysis, this difference is significant only for the gluinos [3].
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where ∆ is given by,

∆ =

(

3

14

)

log
mS

MZ
+

(

8

7

)

log
M

MZ
. (3.5)

Already we can see that raising the scale mS or making gauginos and higgsinos heavier

lowers the prediction for αs(MZ). Thus, split-SUSY can improve the agreement between

αexp
s = 0.119 ± 0.002 [11] and αMSSM,GUT

s calculated assuming unification.

3.3 KK contributions and GUT thresholds

Near the compactification scale Mc, loops of KK modes lead to SU(5) universal power-law

scaling of the couplings. There is also logarithmic non-universal running due to 4d brane

kinetic terms and an effective zero mode mismatch that we will discuss shortly. As in

section 2, we assume that Mc is sufficiently smaller than MG to suppress brane kinetic

contributions. Above Mc, the gauge couplings quickly become strong, so it is natural

to assume that the unification scale coincides with strong coupling. If we have d extra

dimensions, this assumption fixes the ratio MG

Mc
as

(

MG

Mc

)d

≈ 16π2

Cg2
, (3.6)

where g2 is evaluated at the compactification scale and C is a group theory factor (C = 5

for SU(5) or C = 8 for SO(10)) [12].

The effects of SU(5) violating brane kinetic operators can be seen be integrating over

the extra dimension at the unification scale. For a single extra dimension of size R, the

effective 4-D gauge coupling is
1

αi
≈ R

α5D
+

1

α′
i

, (3.7)

where α5D is the bulk 5-D gauge coupling, and α′
i is the brane gauge coupling. Using the

strong coupling assumption of α5DMG ≈ α′ ≈ 4π, the SU(5) violating brane contributions

are suppressed by 1
RMG

= Mc

MG
relative to the SU(5) preserving bulk. For the model we

study, Mc

MG
≈ 1

200 so that SU(5) violating brane contributions are entirely negligible.

By naive dimensional analysis, MG scale threshold corrections to the α−1
i should nat-

urally be of order ≈ 1
4π . Thus, we expect the precision of our prediction for αs(MZ) to

be limited by ≈ αs(MZ )2

4π

√
3 ≈ 0.002. In addition, the effects of strong coupling over a

small energy interval near MG can be expected to make contributions of threshold size. In

all, we estimate the uncertainty from GUT thresholds in our final calculation of αs to be

≈ ±0.003.

Assuming unification at MG, the matching condition between the full theory and the

4d theory below Mc is,

1

αi(M ′
c)

=
1

αG
+

C

4π

[

MG

Mc
− 1

]

+
b̃i

2π
log

MG

M ′
c

+
∆KK,thr

i

2π
, (3.8)

where M ′
c is the appropriate matching scale (M ′

c = Mc

π in the model of section 2), C reflects

the contributions from the tower of KK modes that lead to universal power-law scaling,

– 8 –
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M
′
c

Calculable KK thresholds δ( 1
αi

) =
∆KK,thr

i

2π ≈ 1
2π

Non-universal running δ( 1
αi

) = b̃i

2π log MG

M ′

c
≈ 3−5

2π

MG
Unknown thresholds

δ( 1
αi

) ≈ 1
4π

6

Energy

Figure 2: Summary of threshold corrections and non-universal running between M ′

c and MG.

b̃i are non-universal β-function coefficients, and ∆KK,thr
i are threshold contributions. The

thresholds ∆KK,thr
i come from integrating out the gauge and matter KK modes and can

be calculated given a choice for the matter representation and bulk geography. The bulk

SU(5)-universal scaling controlled by C can be calculated given a suitable UV completion,

but we will not bother with this because unification is not altered by this scaling. We

instead use the estimate C ≈ 5 for SU(5) and C ≈ 8 for SO(10) [12].

In our analysis, the contributions from non-universal running are absorbed into a

matching condition between α3, α2, and α1 at the scale M ′
c. Again taking the linear

combination α−1
3 − 12

7 α−1
2 + 5

7α−1
1 , we obtain

α−1
s (M ′

c) =
12

7
α−1

2 (M ′
c) −

5

7
α−1

1 (M ′
c) +

∆KK

2π
, (3.9)

where ∆KK is

∆KK =

(

b̃3 −
12

7
b̃2 +

5

7
b̃1

)

log
MG

M ′
c

+ ∆thr
KK, (3.10)

and ∆thr
KK = (∆KK,thr

3 − 12
7 ∆KK,thr

2 + 5
7∆KK,thr

1 ). From this relation, we obtain an additional

contribution to δαs(MZ) of,

δαs(MZ) ≈ −αs(MZ)2

2π
∆KK. (3.11)

So, for ∆KK ≥ 0, the prediction for αs(MZ) is lowered, while for ∆KK ≤ 0 it is increased.

This effect, and the competing effect in eq. (3.4) will determine the favored location for

the SM higgs fields in our toy model as well as the preferred range of SUSY breaking mass

scales.

The simplest way to calculate the non-universal β-function coefficients b̃i is to think

about what the boundary conditions do to the spectrum of the bulk theory [12]. For

example, consider the simple case where the extra dimension is a circle S1 orbifolded with

a discrete Z2 symmetry, y → −y. The boundary conditions on the bulk fields at the fixed

point of Z2 result from their Z2 parities and divide the KK tower into states that are even

and odd under Z2. The full KK tower of states on S1 has completely SU(5) invariant

running because there are no SU(5) violating defects in the bulk. Under the orbifold map,

S1 → S1

Z2
, half of the states are projected out (i.e. left and right moving states are mapped
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onto single states). For a particular bulk state T with β-function coefficients bi, let TO
n

(n ≥ 0) and TE
n (n ≥ 0) be the odd and even modes with masses mO

n = n+1/2
R and mE

n = n
R

respectively. The contribution from the odd states TO
n is therefore equivalent to a tower

of states T̃O
n (∞ ≥ n ≥ −∞) on S1 with beta function coefficients bi/2. For the even

states, we can do the same except that the zero mode will not in general have a β-function

coefficient bi/2. So, for the even modes, we can construct a tower of states equivalent to

an S1 tower with an effective zero mode with coefficient b0
i − bi/2, where b0

i is the actual

zero mode β-function coefficient. It is precisely this effective zero mode that generates the

one-loop non-universal running.

This analysis can be easily generalized. If a manifold F is orbifolded under M such

that, apart from the zero mode, nM states of F are mapped to F
M , then the b̃i are given by,

b̃i = b0
i −

bKK
i

nM
, (3.12)

where b0
i is the zero mode β-function coefficient and bKK

i is the the β-function coefficient of

the excited KK states in the tower connected to the zero mode. For the parity assignments

of the model in section 2, the KK tower connected to the zero modes has states with the

same quantum numbers as the zero modes but with N=1 5d SUSY (i.e. N=2 4d SUSY).

For example, suppose the zero mode fills out a N=1 SU(m) vector field V coming from a

5d N=1 vector {V,Σ}. The KK modes connected to the zero mode will then have a one-

loop β-function coefficient, bKK
SU(m) = −2m. On the other hand, the zero mode β-function

coefficient is, b0
SU(m) = −3m. So, bKK

i = 2
3b0

i and b̃i = 2
3b0

i . Generally, b̃i = 2
3b0

i for a

N=1 SUSY vector V zero mode that comes from a bulk 5d SUSY vector in the adjoint.

Analogous calculations show that, bKK
i = −2b0

i , and bKK
i = +2b0

i when the zero mode is an

adjoint Σ, or a fundamental Φ respectively. Thus, with nM = n, we have b̃i = (1 − 2
3n)b0

i ,

b̃i = (1 + 2
n)b0

i , and b̃i = (1 − 2
n)b0

i when the zero mode is a V , Σ, or Φ respectively.

With the above result, we can explicitly calculate the b̃i in our case. First, the gauge

fields come from a bulk vector field, and the zero mode β-function coefficients are given

by (b0
1, b

0
2, b

0
3) = (0,−6,−9) for the MSSM. Thus, (b̃1, b̃2, b̃3) = (0,−6 + 4

n ,−9 + 6
n) for the

gauge fields and so b̃gauge = 1
7(9 − 6

n). The zero mode matter fields all come in complete

SU(5) multiplets, so they do not contribute to non-universal running even if they come from

bulk fields. As for the Higgs fields, they can come from brane fields, bulk hypermultiplet

fields, or bulk gauge fields with the result that b̃higgs,brane = −9
7 , b̃higgs,hyper = −9

7 + 18
7n , or

b̃higgs,gauge = −9
7 − 18

7n respectively. In all, we therefore have,

∆KK =

(−6

7n

)

log
MG

M ′
c

(brane localized Higgs),

∆KK =

(

12

7n

)

log
MG

M ′
c

(Higgs from bulk hypermultiplets),

∆KK =

(−24

7n

)

log
MG

M ′
c

(Higgs from bulk vector multiplets). (3.13)
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In the above, we’ve neglected ∆KK,thr
i contributions, but we included them in our final

two-loop analysis. For reference, ∆thr
KK = 0.84 for the brane and bulk hypermultiplet Higgs

cases, and ∆thr
KK = −1.68 for the bulk vector multiplet Higgs case [20].

Recalling that ∆KK ≥ 0 lowers the prediction for αs(MZ), we see that Higgs fields

coming from bulk hypermultiplets lower αs(MZ) while brane and bulk vector multiplet

Higgs fields increase αs(MZ).

4. Results for gauge coupling unification

In the spirit of the one-loop analysis above, we performed a two-loop analysis using the

model of section 2 to quantify what the unification predictions for αs teach us about

the bulk ”geography” of the theory in light of the split-SUSY scenario. In particular,

we investigated the preferred scale of scalar superpartner masses in split-SUSY and the

preferred location of the Higgs fields in extra dimensional GUTs illustrated by this model.

In order to be as model independent as possible, we assumed complete mass degeneracy

of the squarks, sleptons, and charged and pseudoscalar Higgs, and neglected one-loop

thresholds at mS. We included the yukawa contributions of only the third generation of

SM quarks and leptons in the two-loop RG running of the gauge couplings above MZ . We

also assumed higgsino and gaugino mass unification at M ′
c.

For every choice of mS and M , Mc and Mc

MG
were calculated so that α1 and α2 unify and

are both equal to 4π at MG. Because varying the SUSY breaking scale mS in Split-SUSY

does not change the ordinary 4-D unified coupling αG appreciably, the compactification

scale Mc does not vary much as mS is changed and is typically Mc ≈ 1015 GeV. For the

5-D SU(5) model illustrated above, we took nM = 2, d = 1, and C = 5 to calculate the

logarithmic corrections to the gauge coupling matching conditions at M ′
c. For our analysis

of 6-D SO(10) cases, we took nM = 2, d = 2, and C = 8. Thus, we ignored any additional

model dependent details for 6-D cases. Our results are given for higgsino and gaugino

unified mass boundary conditions of 300 GeV and 1000 GeV and mS is varied from 105 to

1014 GeV.

Figure 3, shows our two-loop results for unification in the original 4d split-SUSY model

of [2 – 4]. The behavior of αs(MZ) as a function of mS and M is clearly well described by

eqs. (3.4) and (3.5) and is in agreement with [3].

Figure 4 shows our results for bulk hypermultiplet Higgs fields in the 5d SU(5) model

of section 2 and a 6d SO(10) model. As expected from eqs. (3.11) and (3.13), we can

see that the effects of non-universal GUT scale running and increasing mS both lower

αs(MZ) and consequently disfavor split-SUSY with bulk hypermultiplet Higgs fields. The

magnitude of the KK contributions scale like 1
d , and so the 6d model is disfavored slightly

less. In both cases, mS ≤ 105 GeV and light gauginos and higgsinos are required in order

to match experiment. c Figure 5 displays our unification results for brane Higgs fields in

the 5d SU(5) model and 6d SO(10) model. In these cases, the effect of lowering αs(MZ)

as mS is increased is compensated by the positive contribution to αs(MZ) coming from

non-universal running above M ′
c. For the 5d SU(5) model, mS is favored to be in the range

mS = 1010±2 GeV, and for 6d SO(10) in the range mS = 109±2 GeV.
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Figure 3: The prediction for αs(MZ) as a function of the SUSY breaking scale mS for the 4D

MSSM. The horizontal dashed lines show the 1σ experimental constraint for αexp
s (MZ) [11]. The

solid lines correspond to tan(β) = 50 and the dashed lines to tan(β) = 1.5. We assume higgsino

and gaugino mass unification at the unification scale.
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Figure 4: The prediction for αs(MZ) as a function of the SUSY breaking scale mS . The top

graphic is for the 5D SU(5) model with bulk hypermultiplet Higgs fields and the bottom graphic

is for a 6D SO(10) model with bulk hypermultiplet Higgs fields. The horizontal dashed lines show

the 1σ experimental constraint for αexp
s (MZ) [11]. The solid lines correspond to tan(β) = 50 and

the dashed lines to tan(β) = 1.5. The compactification scale is set to M ′

c = 4 × 1014 GeV. We

assume higgsino and gaugino mass unification with mass M at the compactification scale. Both

M = 300GeV and M = 1000GeV are shown.
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Figure 5: The prediction for αs(MZ) as a function of the SUSY breaking scale mS . The top

graphic is for the 5D SU(5) model with brane Higgs fields and the bottom graphic is for a 6D

SO(10) model with brane Higgs fields. The horizontal dashed lines show the 1σ experimental

constraint for αexp
s (MZ) [11]. The solid lines correspond to tan(β) = 50 and the dashed lines to

tan(β) = 1.5. The compactification scale is set to M ′

c = 4 × 1014 GeV. We assume higgsino and

gaugino mass unification with mass M at the compactification scale. Both M = 300GeV and

M = 1000GeV are shown.

According to eq. (3.13), the same counter competing effects on αs(MZ) occur for the

bulk vector multiplet Higgs case as well. However, the magnitude of the non-universal

contribution is four times as large than in the brane Higgs case and so all but very large

mS is disfavored as is shown in figure 6. This problem is less severe for the 6d SO(10)

model where the bulk vector multiplet Higgs case requires at least mS = 1013 GeV and

heavy gauginos and higgsinos to not be disfavored. So in this case, the preferred SUSY

breaking scale coincides with the compactification scale.

5. Conclusions

The split-SUSY scenario offers an interesting new framework for beyond the standard

model physics. Not motivated by naturalness as in the MSSM, unification becomes one

of the central motivations for this scenario. Higher dimensional orbifold GUTs offer a

particularly compelling unification framework in which many of the standard problems

of SUSY GUTs can be overcome. In this spirit, we incorporated split-SUSY into a 5d

SU(5) orbifold GUT. The primary constraint on these models is a successful prediction
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Figure 6: The prediction for αs(MZ) as a function of the SUSY breaking scale mS . The top graphic

is for the 5D SU(5) model with the Higgs coming from a bulk vector and the bottom graphic is

for a 6D SO(10) model with the Higgs coming from a bulk vector. The horizontal dashed lines

show the 1σ experimental constraint for αexp
s (MZ) [11]. The solid lines correspond to tan(β) = 50

and the dashed lines to tan(β) = 1.5. The compactification scale is set to M ′

c = 4 × 1014 GeV. We

assume higgsino and gaugino mass unification with mass M at the compactification scale. Both

M = 300GeV and M = 1000GeV are shown.

of low energy gauge couplings. In generic orbifold GUT models, non-universal running

above the compactification scale alters the low energy unification prediction of αs(MZ).

The magnitude and sign of these contributions depends primarily on the bulk geography

of the Higgs fields. On the other hand, lifting the scale of supersymmetry breaking lowers

the unification prediction for αs(MZ). Our one- and two-loop analysis of gauge coupling

unification shows that split-SUSY favors brane Higgs fields and relatively high scales of

SUSY breaking of order 1010±2 GeV.
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